Teething problems! — Monte Carlo evaluation of Normalizing Constants

David J.C. MacKay
Cavendish Laboratory
mackay@mrao.cam.ac.uk

November 29, 1994— Draft 1.3

Abstract

This is a case study of the use of Monte Carlo methods to evaluate normalizing constants. I describe the trials and tribulations of importance sampling and of variational free energy approaches. The results are for a small model with just one latent variable.

More efficient evaluation of the evidence using importance sampling

If we create a sampling distribution \(Q_j(x) \) that is similar to the posterior distribution \(P(x|F_j) \) then the evidence integral can be approximated in terms of \(\{x^{(r)}\}_{r=1}^R \) which are random samples from \(Q(x) \):

\[
L_j(w) = \log \int d^H x \exp(G_j(x; w)) P(x) \\
\simeq \log \left[\frac{1}{R} \sum_r \exp(G_j(x; w)) \frac{P(x)}{Q(x)} \right]
\]

Later, I use this expression to evaluate accurately the evidence for a model that has been adapted by the simple Monte Carlo method above. The sampling distribution \(Q_j(x) \) is set to a Gaussian with mean \(\mu_j \) and diagonal covariance matrix \(\Sigma_j \) obtained from statistics returned by the simple algorithm.

The simple Monte Carlo algorithm gave the results illustrated in figure 4, as \(H \) and \(R \) were varied. The graphs show the evidence as a function of \(R \). Notice that for \(R \) greater than 10 or so, the evidence value settles down, and increasing \(R \) makes negligible difference.

In the case of data \(\text{TOY 1} \), as \(H \) is increased beyond 1, the evidence does not become either substantially larger or substantially smaller, even when the hidden vector has a dimensionality bigger than the dimensionality of the output space. This means that the model is finding a density of effective dimensionality about 1. There is apparently no overfitting problem.

<table>
<thead>
<tr>
<th>Data</th>
<th>(\text{TOY 1})</th>
<th>(\text{TOY 2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(j)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Parameters of models for the \(\text{TOY} \) problems
Figure 1: Toy example. Individual evidences (cols 1 and 2), and sum for all 6 data (col 3). Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, x axis). Top line = plain importance sampling results.
Figure 2: **Toy example. CAUCHY importance sampler. Individual evidences (cols 1 and 2), and sum for all 6 data (col 3).**

Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, x axis). Top line = plain importance sampling results.
Figure 3: Toy example. Various samplers, well optimized. Individual evidences (cols 1 and 2), and sum for all 6 data (col 3).
Top line: plain importance sampling results. 2: Optimized gaussian. 3: Gaussian of double width. 4: Cauchy. 5: Cauchy of double width.
Figure 4: **Toy examples. Estimated evidence.**
Log evidence (y axis) is shown as a function of R (number of Monte Carlo samples, x axis), for models with different numbers of hidden components (H between 0 to 7).
The evidence for the optimized Dirichlet model is also marked. All values are log evidences relative to the null model H_0.
a) Toy example number 1. b) Toy example number 2.

In the case of data **Toy 2**, the results are similar, except that the model with a two-dimensional componental representation is significantly more probable than the one-dimensional density network.

One way to understand what a model is doing is to look at its parameters (at least for small H). Table 1 shows the parameters for the nets with $H = 1$ and $H = 2$, ordered from $i = 1$ to 5 vertically (c.f. horizontal in the data table earlier). Notice that the weights from the inputs in the **Toy 1** cases capture the one dimension apparent to the human eye. When there are two inputs, the weight vectors for those inputs are not orthogonal; they are virtually identical (except for a change of sign). This similarity of the vectors of weights from the two inputs produces a low effective dimensionality in the output space.

When it is adapted to the **Toy 2** data set, the parameters of the density network with two hidden components are very different. The two vectors over i are here virtually orthogonal, so that a fully two-dimensional distribution is produced in the output space.

Amino acid probabilities in aligned protein families
Figure 5 shows the estimated evidence, for $J = 60$ examples, each with a count of $F_j \simeq 177$. Clearly many Monte Carlo samples are needed for a convergent estimate of the evidence.

The evidence for the Dirichlet model is also displayed. According to these results, a componental model with 13 components is more probable than the Dirichlet model.

(c) David MacKay
Figure 5: Amino acid modelling.

Estimated evidence, as a function of R (number of Monte Carlo samples, x axis), for models with different numbers of hidden components ($H = 3$ to 15).
The evidence for the optimized Dirichlet model is also marked. The evidence for other traditional Dirichlet models can also be reported: $\log P(D|u = (1, 1, \ldots, 1)) = 10894.5$; $\log P(D|u = (.05, .05, \ldots, .05)) = 11356.7$.
All values are log evidences relative to the null model \mathcal{H}_0.