Free Energy Minimization Algorithm
for Decoding and Cryptanalysis

David J.C. MacKay
Cavendish Laboratory, Cambridge CB3 0HE
mackay@mrao.cam.ac.uk

Submitted to Electronics Letters November 23, 1994; published 16th March 1995 (vol. 31 no.6)

Abstract

An algorithm is derived for inferring a binary vector \(s \) given noisy observations of \(A s \mod 2 \), where \(A \) is a binary matrix. The binary vector is replaced by a vector of probabilities, optimized by free energy minimization. Experiments on the inference of the state of a linear feedback shift register indicate that this algorithm supersedes Meier and Staffelbach’s polynomial algorithm.

Index: approximate inference, combinatorial optimization, stream cipher.

Consider three binary vectors: \(s \) of length \(N \), and \(z \) and \(n \) of length \(M \geq N \), related by:

\[
(As + n) \mod 2 = z
\]

where \(A \) is a binary matrix. Our task is to infer \(s \) given \(z \) and \(A \), and given assumptions about the statistical properties of \(s \) and \(n \). This problem arises in the decoding of a noisy signal transmitted using a linear code \(A \), and in the inference of the sequence of a linear feedback shift register (LFSR) from noisy observations [1, 2].

I assume that the prior probability distribution of \(s \) and \(n \) is separable thus: \(P(s, n) = \Pi_n P(s_n) \Pi_m P(n_m) \). The log probability of \(z \) as a function of \(s \) can be written in terms of the noise free vector \(t(s) = As \mod 2 \):

\[
\log P(z|s, A) = \sum_m t_m(s) g_m + \text{const.}
\]

1
where \(g_m = \log[P(n_m = 1)/P(n_m = 0)] \) if \(z_m = 0 \) and \(g_m = -\log[P(n_m = 1)/P(n_m = 0)] \) if \(z_m = 1 \). The posterior distribution of \(s \) is, by Bayes’ theorem:

\[
P(s|z, A) = \frac{P(z|s, A)P(s)}{P(z|A)}.
\]

I assume our aim is to find the most probable \(s \), but that an exhaustive search over all \(2^N \)
possible sequences \(s \) is not feasible. One way to attack such a combinatorial optimization
problem is via a related continuous problem in which the discrete variables are replaced by real
variables [3]. Here I derive a continuous representation in terms of a free energy approximation
[4]. I approximate the awkward probability distribution (3) by a simpler separable distribution
\(Q(s; \theta) = \prod_n q_n(s_n; \theta_n) \), parameterized thus:

\[
q_n(s_n=1; \theta_n) = \frac{1}{1 + e^{-\theta_n}} \equiv q_n^1; \quad q_n(s_n=0; \theta_n) = 1 - q_n^1 \equiv q_n^0.
\]

The parameters \(\theta \) are adjusted to find a \(\theta^* \) that minimizes the variational free energy,

\[
F(\theta) = \sum_s Q(s; \theta) \log \frac{Q(s; \theta)}{P(z|s, A)P(s)},
\]

the hope being that the \(s \) that maximizes \(Q(s; \theta^*) \) may also maximize \(P(s|z, A) \). Although \(F \)
is defined by a summation over the \(2^N \) discrete values of \(s \), it is possible to evaluate \(F \) and
its gradient \(\partial F/\partial \theta \) in a time that is proportional to the weight of \(A \), \(w_A \) (\(i.e. \), the number
of ones in \(A \)), as will now be shown.

\(F \) separates into three terms, \(F(\theta) = E_L(\theta) + E_P(\theta) - S(\theta) \), where the ‘entropy’ is: \(S(\theta) \equiv -\sum_s Q(s; \theta) \log Q(s; \theta) = -\sum_n [q_n^0 \log q_n^0 + q_n^1 \log q_n^1] \), with derivative: \(\frac{\partial}{\partial \theta_n} S(\theta) = -q_n^0 q_n^1 \theta_n \); the ‘prior energy’ is: \(E_P(\theta) \equiv -\sum_s Q(s; \theta) \log P(s) = -\sum_n b_n q_n^1 \) where \(b_n = \log[P(s_n = 1)/P(s_n = 0)] \), and has derivative \(\frac{\partial}{\partial \theta_n} E_P(\theta) = -q_n^0 q_n^1 b_n \); and the ‘likelihood energy’ is:

\[
E_L(\theta) \equiv -\sum_s Q(s; \theta) \log P(z|s, A) = -\sum_m g_m \sum_s Q(s; \theta) t_m(s) + \text{const}.
\]

We can compute \(\sum_s Q(s; \theta) t_m(s) \) for each \(m \) by a ‘forward’ recursion involving a sequence of
probabilities \(p_{m, \nu}^1 \) and \(p_{m, \nu}^0 \), for \(\nu = 1 \ldots N \), defined to be the probabilities that the partial sum
\(t_m^1 = \sum_{n=1}^N A_{mn}s_n \mod 2 \) is equal to 1 and 0 respectively. These probabilities satisfy:

\[
\begin{align*}
p_{m, \nu}^1 &= q_{\nu}^0 p_{m, \nu-1}^0 + q_{\nu}^1 p_{m, \nu-1}^1, \\
p_{m, \nu}^0 &= q_{\nu}^0 p_{m, \nu-1}^1 + q_{\nu}^1 p_{m, \nu-1}^0, \\
\end{align*}
\]

with initial condition \(p_{m, 0}^1 = 0, p_{m, 0}^0 = 1 \). We obtain: \(E_L(\theta) = -\sum_m g_m p_{m, N}^1 \). The
derivative of \(E_L \) with respect to \(\theta_n \) can be obtained by evaluating for each \(m \) a ‘reverse’
sequence of probabilities \(r_{m, \nu}^1 \) and \(r_{m, \nu}^0 \), defined to be the probabilities that the partial
sum $r^N_m = \sum_{m=0}^{\infty} A_m s_m \mod 2$ is equal to 1 and 0 respectively. Then using the relation $p_{m,N} = q_n^0 \left(p_{m,n-1}^0 r_{m,n+1}^0 + p_{m,n-1}^0 r_{m,n+1}^0 \right) + q_n^1 \left(p_{m,n-1}^1 r_{m,n+1}^1 + p_{m,n-1}^1 r_{m,n+1}^1 \right)$ and defining $d_{mn} = \left(p_{m,n-1}^1 r_{m,n+1}^1 + p_{m,n-1}^1 r_{m,n+1}^1 \right) - \left(p_{m,n-1}^0 r_{m,n+1}^0 + p_{m,n-1}^0 r_{m,n+1}^0 \right)$, we obtain the derivative of the free energy is:

$$\frac{\partial F}{\partial \theta_n} = q_n^0 q_n^1 \left[\theta_n - b_n - \sum_m g_m d_{mn} \right].$$

(8)

The assignment:

$$\theta_n := b_n + \sum_m g_m d_{mn}$$

(9)

sets the derivative to zero and is guaranteed to reduce the free energy. This re-estimation equation can be efficiently interleaved with the reverse recursion, giving a simple optimizer of F. Optimizers of F can be modified by using ‘deterministic annealing’ [5], in which the non-convexity of the objective function F is switched on gradually by varying an ‘inverse temperature’ β from 0 to 1. This procedure is intended to prevent the algorithm from running into the local minimum that the initial gradient points towards. We define $F(\theta, \beta) = \beta E_L(\theta) + E_P(\theta) - S(\theta)$, and perform a sequence of minimizations of this function over θ with successively larger values of β.

The success of the algorithm is expected to depend on the representation of s, with best results if A is sparse and the true posterior distribution over s is close to separable.

Computational complexity: The algorithm is expected to take of order 1, or at most N, gradient evaluations to converge, so that the total time taken is of order between w_A and $w_A N$. Memory proportional to w_A is required.

Cryptanalysis application

Various demonstrations of this algorithm are given in [6]. Here I describe an application to a cryptanalysis problem, building on the method of Meier and Staffelbach [1]. Assume a LFSR of length k bits with t taps produces a sequence a_0 of length N bits, and noisy observations $a_1 = (a_0 + s) \mod 2$ are made (for details see [1],[2]). Here s is a sparse noise vector of length N. For $N \gg k$, as in ref. [1], we can create a sparse $M \times N$ matrix A of parity checks such that $Aa_0 \mod 2 = 0$, each row of A having weight $(t+1)$. The noisy sequence a_1 violates some of these parity checks as described by the vector $z \equiv Aa_1$. Then our problem is to find the noise vector s that satisfies:

$$As \mod 2 = z,$$

(10)
and that has maximum prior probability, given our knowledge of the noisy observation process. [There are many \(2^k\) values of \(s\) satisfying equation (10), one for each of the possible initial LFSR states.] In (10), unlike (1), there is no noise added to \(As\). However, we can apply the free energy method to a sequence of problems of the form \((As + n) \mod 2 = z\) with increasing inverse temperature \(\beta\), such that the noise-free task is the limiting case, \(\beta = \infty\).

Experimental results

Test data were created for specified \(k\) and \(N\) using random taps in the LFSR and random observation noise with fixed uniform probability. The parameter \(\beta\) was initially set to 0.25. For each value of \(\beta\), the optimization was run until the decrease in free energy was below a specified tolerance (0.001). \(\beta\) was increased by factors of 1.4 until either the most probable vector under \(Q(s; \theta)\) satisfied (10), or until a maximum value of \(\beta = 4\) was passed.

Figure 1 here.

Results are shown in figure 1. Each dot represents an experiment. A box represents a successful decoding. On each graph a horizontal line shows an information theoretic noise bound above which one does not expect to be able to infer \(s\), and two curved lines, from tables 3 and 5 of ref. [1], show (lower line) the limit up to which Meier and Staffelbach's 'algorithm B appeared to be very successful in most experiments' and (upper line) the theoretical bound beyond which their approach is definitely not feasible.

Conclusion

This paper has derived an algorithm with a well-defined objective function for inference problems in modulo 2 arithmetic. In application to a cryptanalysis problem, this algorithm is similar to Meier and Staffelbach's [1] algorithm B and thus answers their question of whether a derivation could be provided. But it is not identical: the details of the mapping from \([0,1]^N \rightarrow [0,1]^N\) are different, and there is no analogue of their multiple 'rounds' in which the data vector \(a_1\) is changed. The new algorithm appears to give superior performance and frequently succeeds at parameter values right up to the upper theoretical limits derived by Meier and Staffelbach.

Acknowledgements

I thank R. Anderson, R. Neal and R. Sewell for helpful discussions.
References

Figure 1: Results for cryptanalysis problem as a function of number of taps (horizontal axis) and noise level (vertical).